	Chayut Teeraratkul chayut.teeraratkul@colorado.edu - 585-200-1435
EDUCATION	University of Colorado Boulder - Boulder, COPh.D. Mechanical EngineeringAug 2019 - Present• Advisor: Prof. Debanjan Mukherjee
	 University of Rochester - Rochester, NY Master of Science in Mechanical Engineering Aug 2017 - May 2019 Thesis: DiNuSphere - A Scalable Pseudospectral Code for Flows in Spherical Geometries
	• Advisor: Prof. Hussein Aluie
	Bachelor of Science in Mechanical EngineeringAug 2013 - May 2017• Cumulative GPA 3.32, Major GPA 3.62
	• Graduated with Distinction
RESEARCH EXPERIENCE	 Image Derived CFD For Flow Around Dynamic Blood Clots Developed a custom image segmentation technique that obtains deforming blood clot geometry inside live mice
	• Perform computational fluid dynamics simulation around the image-derived blood clot geometry
	• Developed custom preconditioning technique for fictitious domain finite element CFD code of flow around porous blood clots
	• Analyze flow and flow-mediated transport around the dynamic blood clots inside live mice
	 Fluid-Structure Interactions Simulation Of Arterial Blood Clots Developed custom mesh non-conforming fluid-structure interaction code which simulates arterial blood clots underflow
	• Devised computational methods to study flow and transport around blood clots
	 Pseudo-Spectral Turbulence Simulation for Spherical Geometry Developed a high-fidelity pseudo-spectral turbulence flow simulation on a spherical geometry
	• Parallelized the developed code to run on multiple distributed memory processes using MPI
	 Performance Evaluation of Underwater Turbine Designs Conducted CFD simulations via ANSYS Fluent on different underwater turbine shroud geometries.
	• Compared the efficiency of each turbine design.
JOURNAL ARTICLES	1. Teeraratkul, C. , Tomaiuolo, M., Stalker, T. J., Mukherjee, D. Investigating clot flow interactions by integrating intravital imaging with in silico modeling: flow, transport, and hemodynamic forces. <i>Under review</i>
	 Teeraratkul, C., Mukherjee, D. (2021). Microstructure Aware Modeling Of Bio- chemical Transport In Arterial Blood Clots. <i>Journal of Biomechanics</i>. 127:110692
	 Teeraratkul, C., Irwin, Z., Shadden, S.C., Mukherjee, D. (2021). Computa- tional investigation of blood flow and flow-mediated transport in arterial throm- bus neighborhood. <i>Biomechanics and Modeling in Mechanobiology.</i> 20:701-715.
	 McBride, G., Teeraratkul, C. (2017). Lateral Effluent Discharge Apparatus for a Tidal Turbine (Where Does the Water Go?). <i>Marine Technology Society</i> <i>Journal.</i> 51:86-94(9).

PEER- REVIEWED PROCEEDINGS	1. Teeraratkul, C. , Stalker, T. J., Tomaiuolo, M., Mukherjee, D. Image driven simulation of hemodynamics around a dynamic clot in vivo. <i>Summer Biome-</i> <i>chanics, Bioengineering, and Biotransport Conference. June 2023</i>
	2. Teeraratkul, C. , Mukherjee, D. Parallel Implementation of a Hybrid Particle- Continuum Finite Element Framework for Blood Clot Biomechanics. <i>The Inter-</i> <i>national Conference for High Performance Computing, Networking, Storage, and</i> <i>Analysis. November 2020 (held online)</i>
AWARDS & FELLOWSHIP	1. Tom and Brenda Geers Graduate Fellowship: Awarded for exhibiting ex- traordinary capabilities and potential for PhD work in solid and/or fluid mechan- ics.
	2. Best Poster Award: 10th Annual Rocky Mountain Advanced Computing Con- sortium HPC Symposium, 2020
	3. USNCCM16 Travel Award: 16th U.S. National Congress on Computational Mechanics, 2021
	4. APS-DFD Travel award: 74th Annual Meeting of the American Physical So- ciety Division of Fluid Dynamics, 2021
PROFESSIONAL EXPERIENCE	 Consultant at Qualitrol Corp. Jun 2016 - Aug 2016 Performed a CFD simulations via ANSYS Fluent to determine the volume flow rate through the outlet of a pressure relay.
	• Used the simulation results to assist in redesigning the pressure relay.
PROFESSIONAL SERVICE	 Executive Member USACM Student Chapter Jan 2023 - present Help determine the structure and activities for the student chapter of the U.S. Association of Computational Mechanics.
MENTORING EXPERIENCE	 Virtual Summer Research Internship Jun 2022 - Aug 2022 Mentor international undergraduate student researcher on the aspects of graduate level research in a US institution.
TEACHING EXPERIENCE	 Graduate Part Time Instructor: MCEN 5228-005: Computational Fluid Dynamics (Spring 2022)
	 Teaching Assistant: University of Colorado Boulder MCEN 5173: Finite Element Analysis (Spring 2021)
	Teaching Assistant: University of RochesterME400: Applied Boundary Value Problems (Fall 2018)
	• ME123: Thermodynamics (Spring 2018)
	• ME242: Solids and Materials Lab (Fall 2017)
	• ME225: Fluid Mechanics (Fall 2016)
	• CSC160: Engineering Computing (Spring 2015)
ABSTRACTS & PRESENTA- TIONS	 Teeraratkul, C., Tomaiuolo, M., Stalker, T. J., Mukherjee, D. Image Driven Simulation Methodology For In-Vivo Blood Clot-Hemodynamic Interaction 17th U.S. National Congress on Computational Mechanics, Albuquerque, Colorado. July 2023.
	 Teeraratkul, C., Tomaiuolo, M., Stalker, T. J., Mukherjee, D. Image Driven Simulation of Hemodynamics Around a Dynamic Clot In Vivo Summer Biome- chanics, Bioengineering, and BIotransport Conference, Vail, Colorado. June 2023.

- 3. Teeraratkul, C., Tomaiuolo, M., Stalker, T. J., Mukherjee, D. Intravital Microscopy to Continuum In Silico Simulation of Flow-mediated Transport in Blood Clot Neighborhoods. 75th Annual Meeting of the American Physical Society Division of Fluid Dynamics, Indianapolis, Indiana. November 2022.
- 4. Teeraratkul, C., Mukherjee, D. Flow and flow mediated transport in dynamic blood clot neighborhoods. 8th Annual Rocky Mountain Fluid Mechanics Research Symposium. August 2022
- 5. Teeraratkul, C., Mukherjee, D. Parallel Implementation of Efficient Cell Location Algorithm On Unstructured Mesh With Applications To Immersed Finite Element Methods. 10th Annual Rocky Mountain Advanced Computing Consortium HPC Symposium. August 2022
- 6. Teeraratkul, C., Mukherjee, D. Immersed Discrete Element Method With Applications In Embolus Transport. 15th World Congress on Computational Mechanics, July 2022 (held online)
- 7. Teeraratkul, C., Mukherjee, D. Fluid-particle Interaction Using Immersed Finite Element Method With Applications In Arterial Flows. 74th Annual Meeting of the American Physical Society Division of Fluid Dynamics, Phoenix, Arizona. November 2021.
- 8. Teeraratkul, C., Tomaiuolo, M., Mukherjee, D. In Silico Exploration Of Driving Forces For Transport In Arterial Thrombus Neighborhood. *The 2021 Biomedical Engineering Society Annual Meeting. October 2021.*
- Teeraratkul, C., Mukherjee, D. Two-way Coupled Fluid-particle Interaction Using Immersed Finite Element Method. 7th Annual Rocky Mountain Fluid Mechanics Research Symposium. August 2021. (held online).
- 10. **Teeraratkul, C.**, Mukherjee, D. Computational Model For Biochemical Transport In Large Arterial Thrombus Neighborhood. *The 16th United States National Congress On Computational Mechanics. July 2021. (held online).*
- 11. **Teeraratkul, C.**, Mukherjee, D. Implementation of fluid-structure interactions for rigid body motion in FEniCS using immersed finite element method. *The FEniCS 2021 Conference. March 2021 (held online)*
- Teeraratkul, C., Mukherjee, D. Hemodynamic Phenomena at the Blood-Thrombus Interface – Implications for Thrombosis. 14th World Congress on Computational Mechanics, January 2021 (held online)
- 13. **Teeraratkul, C.**, Mukherjee, D. Quantification of the Hemodynamic Environment around Large Arterial Blood Clots. 73th Annual Meeting of the APS Division of Fluid Dynamics, November 2020 (held online)
- 14. **Teeraratkul, C.**, Mukherjee, D. Understanding Flow-mediated Transport in the Arterial Thrombus Neighborhood. 6th Annual Rocky Mountain Fluid Mechanics Research Symposium August 2020 (held online)
- 15. **Teeraratkul, C.**, Mukherjee, D. Parallel Implementation of a Hybrid Particle-Continuum Finite Element Framework for Blood Clot Biomechanics. 10th Annual Rocky Mountain Advanced Computing Consortium HPC Symposium. May 2020 (held online)